Hemodynamic responses to simulated weightlessness of 24-h head-down bed rest and KAATSU blood flow restriction

Toshiaki Nakajima · Haruko Iida · Miwa Kurano · Harubito Takano · Toshihiro Morita · Kentaro Meguro · Yoshiaki Sato · Yoshihisa Yamazaki · Sino Kawashima · Hiroshi Ohshima · Shouichi Tachibana · Naokata Ishii · Takashi Abe

Accepted: 10 July 2008 / Published online: 24 July 2008
© The Author(s) 2008

Abstract The KAATSU training is a unique method of muscle training with restricting venous blood flow, which might be applied to prevent muscle atrophy during space flight, but the effects of KAATSU in microgravity remain unknown. We investigated the hemodynamic responses to KAATSU during actually simulated weightlessness (6° head-down tilt for 24 h, \(n = 8 \)), and compared those to KAATSU in the seated position before bed rest. KAATSU was applied to the proximal ends of both the thighs. In the seated position before bed rest, sequential incrementing of KAATSU cuff pressure and altering the level of blood flow restriction resulted in a decrease in stroke volume (SV) with an increase in heart rate (HR). KAATSU (150–200 mmHg) decreased SV comparable to standing. Following 24-h bed rest, body mass, blood volume (BV), plasma volume (PV), and diameter of the inferior vena cava (IVC) were significantly reduced. Norepinephrine (NOR), vasopressin (ADH), and plasma renin activity (PRA) tend to be reduced. A decrease in SV and CO induced by KAATSU during the simulated weightlessness was larger than that in the seated position before bed rest, and one of eight subjects developed presyncope due to hypotension during 100 mmHg KAATSU. High-frequency power (HFRR) decreased during KAATSU and standing, while low-frequency/high-frequency power (LFRR/HFRR) increased significantly. NOR, ADH and PRA also increased during KAATSU. These results indicate that KAATSU blood flow restriction reproduces the effects of standing on HR, SV, NOR, ADH, PRA, etc., thus stimulating a gravity-like stress during simulated weightlessness. However, syncope due to lower extremity blood pooling and subsequent reduction of venous return may be induced during KAATSU in microgravity as reported in cases of lower-body negative pressure.

Keywords KAATSU training · Autonomic function · Space flight · Cardiovascular deconditioning · 6° head-down tilt bed rest · Sympathetic activity

Introduction

The weightless environment of space flight causes serious adaptive changes in cardiovascular function as well as muscle atrophy. A shift in blood volume from lower-body capacitance vessels toward the head and elevation of tissue capillary perfusion pressure in the head causes facial and intracranial edema and headache, which distresses astronauts. And, nearly all crew members develop cardiovascular
deconditioning characterized by orthostatic intolerance and reduced upright exercise capacity, which is manifest after space flight (Nicogossian et al. 1965; Buckey et al. 1996; Fritsch-Yelle et al. 1996). The mechanisms involved in this deconditioning include hypocoagulation, decreased baroreflex responsiveness, and decreased skeletal muscle stiffness. Therefore, effective countermeasures during spaceflight are needed to maintain the cardiovascular system, as well as the musculoskeletal structure-function to ensure the well-being and safety of crew members during space flight and upon return to Earth.

An elastic thigh cuff, called “brackets,” has been reported to be an effective passive countermeasure for reducing edema and venous stasis in the cephalic region by pooling blood in the vascular and extravascular compartments of the legs, easing the stress of zero gravity (Lindgren et al. 1998; Arbeille et al. 1999; Millet et al. 2000). However, the effectiveness of brackets to prevent cardiovascular deconditioning is incomplete, providing only partial compensation for the cardiovascular changes (Herrault et al. 2000). The most effective countermeasure for preventing cardiovascular deconditioning appears to be imposition of a gravity-like stress, such as lower-body negative pressure (LBNP) (Gigli et al. 1990, 1992; Lathers and Charles 1993). When combined with intensive exercise, LBNP is a potent orthostatic stimulus, which presumably provides an effective prevention of orthostatic intolerance following space flight (Lee et al. 1997; Watpennagh et al. 2000). However, a large-scale apparatus combined with exercise machine is required. In addition, LBNP can be combined with treadmill (Murphy et al. 1994), but not resistance-type machines. The use of resistance exercises may be essential to prevent muscle atrophy during space flight as resistance training specifically promotes muscle enlargement and muscular strength, which are negatively impacted by weightlessness. Thus, if a method of exercise with a potent orthostatic stimulus like LBNP exists, it may provide an effective countermeasure for cardiovascular deconditioning as well as muscle atrophy in weightlessness.

The key physiological features of LBNP are lower extremity blood pooling, reduction of venous return to the heart, and subsequent hemodynamic changes including increased autonomic nervous system activation (Stevens and Lamb 1965; Tomsaelli et al. 1987; Lathers and Charles 1993). The KAATSU training is a unique technique of performing low-load exercises such as resistance exercises and treadmill with restricted muscle blood flow that results in an increase in muscle mass and muscular strength comparable to high-intensity training (Takada et al. 2000; Abe et al. 2006). Since KAATSU femoral blood flow restriction induces the retention of blood flow in lower extremities, it reduces venous return, and induces subsequent hemodynamic changes such as decreased SVR and increased TPR like LBNP (Stevens and Lamb 1965; Gigli et al. 1990, 1992; Melchior et al. 1994; Murphy et al. 1994; Lee et al. 1997; Watpennagh et al. 2000; Iida et al. 2007). Thus, KAATSU may partly provide an orthostatic stimulus, and an effective countermeasure for cardiovascular deconditioning in weightlessness like LBNP. However, the potency of KAATSU for inducing pooling of venous blood and then hemodynamic changes in microgravity has not been investigated. In addition, the occurrence of syncopal attack has been reported in cases of LBNP, especially when using high pressure more than 40 mmHg (Stevens and Lamb 1965), but the safety of KAATSU in microgravity remains unclear.

Therefore, the aim of this study is to examine the hemodynamic responses to KAATSU during actually simulated weightlessness (6g head-down tilt for 24 h), and to compare those to KAATSU in the seated position before bed rest. In addition, the potency for inducing pooling of venous blood and then hemodynamic changes during KAATSU is compared to those reported during LBNP.

Materials and methods

Subjects

Eight males (age 32.8 ± 1.0 years; height 176 ± 16 cm; weight 75.3 ± 3.9 kg) participated in the following experiments. All subjects were healthy, free of neuromuscular or cardiovascular disease, were not on any medication, and none had a specific history of physical exercise training. This investigation was approved by the institutional review board (IRB) of Ibaraki. The ethics committee of the University of Tokyo, and all subjects gave their informed consent prior to inclusion.

Experimental protocol

This study consisted of two experiments as summarized in Fig. 1. All experiments were separated by 1–2 weeks, and were performed at the Japanese Aerospace Exploration Agency between 25 September and 26 October in 2006.

Experiment A

As shown in Fig. 1a, to mimic KAATSU training on Earth, the effects of sequential incremental of KAATSU cuff pressure (50 mmHg step) on hemodynamic parameters in the seated position were examined in the morning. After a 30-min rest in the seated position, we took rest measurement of hemodynamic parameters at this position for 5 min by using an impedance cardiograph. Then, both the tactual thi gh were pressure-applied with the specifically designed belt developed for space flight (see below). After recording the hemodynamic parameters for 10 min under 100 mmHg KAATSU, the banding pressure was released and the hemodynamic parameters were continuously taken during a 5–10 min recovery time. After the additional 30 min rest in the seated position, the effects of 150 mmHg KAATSU on hemodynamic parameters were investigated. Similarly, we repeated the experiments of KAATSU (200 mmHg). Finally, the effects of standing on hemodynamic parameters were also investigated. During the first experiment, nobody complained of any symptoms including syncopal attack.

Experiment B

This experiment was designed to investigate the effects of KAATSU on hemodynamic parameters during the weightlessness, which was simulated for 24 h using bed rest with a 6g head-down tilt. Subjects maintained 6g head-down tilt position during the entire bed rest period. Transportation and toilet procedures were restricted to the head-down recumbent position. Subjects were allowed to rest on their elbows during meals and could move voluntarily but remained horizontal to the bed. To ensure compliance, the volunteers were monitored at all times by video-camera surveillance. Subject’s diet, fluid intake, and urine volume were also monitored.

The control echocardiographic, and blood samples were obtained after bed rest (0 h) and after 10 min of bed rest. After 24 h after bed rest (24 h bed rest), the effects of KAATSU on hemodynamic parameters were examined while maintaining the head-down tilt and bed rest position. Control hemodynamic parameters after 24-h bed rest were monitored continuously for 5 min, followed by echocardiography and collection of blood samples. Then, hemodynamic responses to KAATSU were studied at two levels of KAATSU belt pressure (50 and 100 mmHg). The following imaging patterns applied: (a) KAATSU at 50 mmHg for 10 min continuous hemodynamic measurement, remove KAATSU, and record an additional 10 min of continuous hemodynamic response, then rest without KAATSU for 30 min. The KAATSU pressure was first set to 100 mmHg, but the first subject complained of presyncopal attack and was excluded from the following experiments and data analysis. Therefore, the remaining subjects (n = 7) began with a lower KAATSU cuff pressure (50 mmHg) prior to 100 mmHg. After completing the two KAATSU pressure trials in bed rest position, subject stood up and hemodynamic response was recorded continuously for 5 min in standing position. We had not examined 150 mmHg due to the marked decrease in SV during 100 mmHg. With each pressure perturbation, blood samples were collected immediately following release of KAATSU (0–1 min), and 30 min after the release. The data obtained from seven subjects who completely finished both experiments were shown.

Methods

KAATSU blood flow restriction

Femoral blood flow was impaired using the KAATSU technique, which restricts venous blood flow and causes pooling of blood in capacitance vessels distal to the cuff (Takada et al. 2000; Takano et al. 2005; Abe et al. 2006; Fujita et al. 2007; Iida et al. 2007). KAATSU was applied to the proximal end of both the thighs as near to the hip joint as possible by using KAATSU belts (65 mm in width and 650 mm in length). The cuff pressure was controlled by the KAATSU apparatus as previously described (Iida et al. 2007).

Cardiovascular hemodynamics

Hemodynamic parameters were determined using the Task Force Monitor (CNSytems Medizintechnik, Graz, Austria) as previously described (Takano et al. 2005; Iida et al. 2007). Analysis included electrocardiogram (ECG), impedance cardiography, beat-to-beat blood pressure by vascular unloading technique and oscilometric blood
pressure. Data were obtained for every beat with a 1,000 Hz sampling rate and used to calculate all hemody-
namic parameters in real time. Data included heart rate (HR; bpm), mean arterial blood pressure (mAP; mmHg),
systolic blood pressure (sBP), diastolic blood pressure (dBP), stroke volume (SV; ml), cardiac output (CO; l/min) and
total peripheral resistance (TPR; dyne s cm⁻⁵). TPR was calculated in relative units as MAP·CO⁻¹, and the
calculation of CO and TPR was as follows.

\[CO = SV \times HR \]

\[TPR = MAP \times 80 \times CO^{-1} \]

Histograms of RR intervals were computed and pseudo-
digitized at ten samples per second. Auto-regressive model-
ing (Burg method) was used to construct frequency
domain spectrograms of the heart rate variability (HRV).
Parameters extracted from the variability spectra were low-
frequency power (LFP₆₅, 0.00-0.15 Hz) and high-frequency
power (HP₆₅, 0.16-0.50 Hz), normalized to total power over
the range from 0.01 to 0.50 Hz.

Cardiac dimensions

Trans-epicardial echocardiography was performed using
Aplo60. Left ventricular end-systolic dimension (LVESD;
nm), left ventricular end-diastolic dimension (LVEDD; nm)
and the diameter of inferior vena cava (IVC; cm) were
determined using the M-mode recording in the parasternal
long-axis view with the pulsed wave as described previ-
ously (Iida et al. 2007).

Hormone-metabolite levels

Venous blood samples were collected and analyzed for
ehematocrit, hemoglobin, nonessential amino acids, plasma renin activ-
ity and vasopressin. Blood sample was accomplished with an
indwelling catheter inserted into the superficial antebra-
chal vein of left arm. For measurement of hematocrit and
hemoglobin, 2 ml of blood was placed into test tubes con-
taining EDTA-2Na. For hormone determination, blood
(7 ml) was placed in test tubes containing 10.5 mg of EDTA-
2Na. All samples were kept in ice-cold water and centrifuged
(3000 rpm) for 10 min and the plasma was stored at −20°C
until the assays were performed. Blood hematocrit (Hb, g d⁻¹)
determined by the cyanomethemoglobin method (Coulter
hematocritmeter) and hematocrit (Hct, %) by the
micro-hematocrit centrifugation technique. Plasma
concentrations of nonrenin ANG (ANG; low limit of
detection 0.6 pg ml⁻¹) were measured using high perfor-
ance liquid chromatography. Plasma renin activity (PRA; lower limit of detection 0.1 ng ml⁻¹ h⁻¹) and vasopressin
(ADH; lower limit of detection 0.2 pg ml⁻¹) were
determined by radioimmunoassay. These assays were com-
pleted at commercially available laboratories (SRL Inc.,
Tokyo, Japan).

Changes in blood and plasma volume (%) were derived
from the following equation:

\[V_B \times V_B'^{\Delta} = V_B^{\Delta} \times H_B^{\Delta} \]

\[\% \Delta V = 100 \times \left(\frac{V_B^{\Delta}}{V_B^0} \times \frac{1}{1 - H_C^{\Delta}} \right) \]

where A is the initial value and B is the value at the cor-
ting time corresponding.

Data analysis

All values are expressed as means ± SEM. Student’s paired
t-test was used to compare two sets of data from the same
subjects. Comparison of time courses of parameters was
analyzed by one-way ANOVA for repeated measures.
When differences were indicated, a Bonferroni’s compar-
im was used to determine significance. Differences were
considered significant if P < 0.05.

Results

Table 1 shows the hemodynamic changes during KAATSU
(100-200 mmHg) in the seated position and the standing
position before bed rest. The pressurization of 100-
200 mmHg significantly increased HR, and decreased SV,
which depended on the pressure. 200 mmHg KAATSU
increased HR from 64.8 ± 3.2 to 74.0 ± 4.0 bpm (n = 7,
P < 0.01). After the release of pressure, HR promptly
returned to the pre test level. The pressurization of 200 mmHg
depressed SV from 73.6 ± 3.5 to 60.2 ± 2.2 ml
(n = 7, P < 0.01). After an orthostatic stress (standing), HR
increased with decreasing SV. The decrease in SV observed
during 150-200 mmHg was lower than that in the standing
position (66.9 ± 2.4 ml). CO did not significantly change
during KAATSU in the seated position before bed rest. TPR,
sBP, mSBP, and dBP were also not significantly altered
during KAATSU.

Following 24 h of 6h head-down tilt bed rest, there was a
2.0 kg decrease in body mass (75.3 ± 3.9 to 73.3 ± 3.8 kg,
n = 7, P < 0.01) associated with a significant urine output
(202 ± 249 ml h⁻¹) that markedly exceeded water intake
(1320 ± 67 ml h⁻¹). Following 24 h of 6h head-down tilt bed
rest, blood (4.4 ± 1.4%) and plasma (7.9 ± 2.5%) volume
decreased as Hct (46.4 ± 1.2% to 48.5 ± 0.8%, P < 0.01)
and Hb (15.0 ± 0.3) to 15.7 ± 0.3 mg/dl (P < 0.01) sign-
ificantly increased.

Table 1: Hemodynamic responses during KAATSU in the seated position

<table>
<thead>
<tr>
<th>HR (bpm)</th>
<th>sBP (mmHg)</th>
<th>dBSP (mmHg)</th>
<th>mSBP (mmHg)</th>
<th>dSBP (mmHg)</th>
<th>SV (ml)</th>
<th>CO (l min⁻¹)</th>
<th>TPR (dyne s cm⁻⁵)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre 68.8 ± 3.1 122.9 ± 6.8 93.8 ± 4.6 81.5 ± 4.0 74.8 ± 3.1 5.1 ± 0.3 1495 ± 103 1570 ± 128 1679 ± 135 1695 ± 168 1664 ± 123 1756 ± 114 1420 ± 123 1576 ± 264 1735 ± 109</td>
<td>P < 0.05 Pre</td>
<td>P < 0.05 Pre</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Hemodynamic responses during KAATSU following 24-h bed rest

<table>
<thead>
<tr>
<th>HR (bpm)</th>
<th>sBP (mmHg)</th>
<th>dBSP (mmHg)</th>
<th>mSBP (mmHg)</th>
<th>dSBP (mmHg)</th>
<th>SV (ml)</th>
<th>CO (l min⁻¹)</th>
<th>TPR (dyne s cm⁻⁵)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre 58.9 ± 3.7 120.0 ± 5.6 93.5 ± 3.2 79.4 ± 2.5 88.0 ± 5.3 5.2 ± 0.6 1480 ± 145 1572 ± 153 1485 ± 143 1560 ± 211 1876 ± 166 1660 ± 211 1657 ± 186 1966 ± 190</td>
<td>P < 0.05 Pre</td>
<td>P < 0.01 Pre</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3 Hemodynamic responses during KAATSU following 24-h bed rest

<table>
<thead>
<tr>
<th></th>
<th>Hb (mg dL⁻¹)</th>
<th>Hct (%)</th>
<th>BV (dl)</th>
<th>PV (dl)</th>
<th>NOR (pg ml⁻¹)</th>
<th>PRA (ng ml⁻¹)</th>
<th>ADH (pg ml⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre</td>
<td>15.7 ± 0.25</td>
<td>48.5 ± 0.75</td>
<td>-4.4 ± 1.4</td>
<td>-7.9 ± 2.5</td>
<td>157 ± 24</td>
<td>0.86 ± 0.18</td>
<td>1.5 ± 0.12</td>
</tr>
<tr>
<td>50</td>
<td>15.7 ± 0.25</td>
<td>48.2 ± 0.77</td>
<td>-3.9 ± 1.5</td>
<td>-6.4 ± 2.4</td>
<td>211 ± 35*</td>
<td>0.04 ± 0.14</td>
<td>1.0 ± 0.18</td>
</tr>
<tr>
<td>Pre</td>
<td>15.6 ± 0.26</td>
<td>47.9 ± 0.81</td>
<td>-3.6 ± 1.3</td>
<td>-5.5 ± 2.4</td>
<td>148 ± 20</td>
<td>0.77 ± 0.13</td>
<td>1.39 ± 0.17</td>
</tr>
<tr>
<td>100</td>
<td>15.8 ± 0.21</td>
<td>48.4 ± 0.63</td>
<td>-4.7 ± 1.7</td>
<td>-7.5 ± 2.9</td>
<td>235 ± 41**</td>
<td>1.09 ± 0.20**</td>
<td>2.2 ± 0.62*</td>
</tr>
<tr>
<td>Post</td>
<td>15.6 ± 0.25</td>
<td>48.0 ± 0.74</td>
<td>-3.6 ± 1.4</td>
<td>-5.8 ± 2.5</td>
<td>174 ± 23</td>
<td>0.69 ± 0.12</td>
<td>1.7 ± 0.20</td>
</tr>
</tbody>
</table>

* P < 0.05 versus Pre
** P < 0.01 versus Pre

Table 3 shows that the data of BV and PV show the percentage changes (%Δ), compared with the volume at 0-h bed rest.

![Graph](https://via.placeholder.com/150)

The increase observed upon standing. BP did not change significantly. Upon standing, mBP was significantly increased (Table 2).

Figure 2 summarizes the effects of KAATSU on hemodynamic parameters in the seated position before bed rest and at 60° head-down tilt bed rest during the simulated weightlessness. HR (Fig. 2a) increased only slightly while mBP (Fig. 2b) increased significantly during KAATSU in the simulated weightlessness. These were not significantly different from those in the seated position before bed rest. On the other hand, KAATSU markedly reduced SV (Fig. 2c) and CO (Fig. 2d) with an increase in TPR (Fig. 2e) during the simulated weightlessness, compared to the seated position before bed rest.

Discussion

The present study shows that following 60° head-down tilt bed rest for 24 h, a model simulating microgravity effects on the cardiovascular system, KAATSU blood flow restriction reproduces the effects of standing on HR, SV, NOR, PRA, ADH, etc., thus simulating a gravity-like stress during simulated weightlessness. However, sympy due to lower extracellular space and subsequently reduced venous return will not be induced by KAATSU in microgravity as reported in cases of LBSP.

During 60° head-down tilt bed rest, a model to simulate zero G eliminates the normal downward hydrostatic pressure gradients and causes an immediate central fluid shift from lower extremities toward the thoracic–cephalic region. The central hypervolemia affects skeletal muscle and alters cardiac output.

Figure 3 Effects of KAATSU on heart rate variability (HRV) after 24-h bed rest. A: The time courses of HRV during KAATSU. Note that during KAATSU (100 mmHg), LFBx increased, compared with the control, while HFBx decreased. B: Effects of orthostatic stress (standing) and KAATSU on HFBx. C: Effects of orthostatic stress (standing) and KAATSU on LFBx/LFBx. All values are mean ± SEM obtained from seven subjects. * P < 0.05, ** P < 0.01 versus control (post).
decrease in SV induced by 100 mmHg KAATSU was approximately equivalent to that induced by standing. The effects of 50 mmHg KAATSU on SV were less than 100 mmHg KAATSU. Thus, the magnitude of venous pooling, reduced venous return, and the decrement of SV is greatly dependent upon the level of the KAATSU (Iida et al. 2007). While orthostatic stress decreases SV, and induces hypotensive stimuli, CO and BP are maintained by an increased HR and TRP via arterial and cardiopulmonary baroreceptor control of circulation. Under the hypovolemic condition of 24-h bed rest, KAATSU (50 and 100 mmHg) induced a larger decrease in SV with an increase in HR and TRP. Thus, during KAATSU, arterial baroreceptors as well as cardiopulmonary baroreceptors were unloaded (Furlan et al. 2001; Brown et al. 2003), which mimicked orthostatic stress. During actual space flight, the Russian physicians have already used a unique method for a countermeasure, called "bracelets" to reduce edema and venous stasis in the cephalic region by pooling blood in the vascular and extravascular compartments of the legs (Lindgren et al. 1998; Arbeille et al. 1999; Milti et al. 2000). This method applies a pressure of ~30 mmHg, proposing that the degree of venous pooling induced by the bracelets is much lower than that observed in KAATSU, where the cuff pressure of 100–250 mmHg is used to restrict muscle blood flow and increase muscle mass. Regarding the sympathetic nervous responses to KAATSU, Hfαα-LF=1/2 μM, a marker of sympathetic activity, and the serum concentration of NOR, a well-known neurotransmitter released from sympathetic nerve, increased, which depended on the pressure of KAATSU. On the other hand, Hfαα, a marker of parasympathetic activity, decreased with KAATSU. Overall, it also indicates that during KAATSU, the arterial baroreceptor unloading is the dominant phenomenon leading to sympathetic excitation during the simulated weightlessness. The renin-angiotensin system is activated by an orthostatic stress (Duranteau et al. 1995). And, orthostatic intolerance after bed rest or spaceflight may partly result from impaired vasodilatation, possibly due to a decreased secretion of renin-angiotensin (Fortney et al. 1991). During 6th head-down bed rest, the secretion of PRA and ADH was increased during KAATSU, depending on the degree of the pressure. From these observations, it is likely that the application of the KAATSU, when using a proper pressure, on both the thighs partly simulates hemodynamic, systemic cardiovascular, autonomic nervous and hormonal effects of orthostasis during the simulated weightlessness.

Both LBNP and KAATSU induce the retention of blood flow in lower extremities, and induce subsequent hemodynamic changes such as decreased SV and CO and increased TPR (Stevens and Lamb 1965; Giuli et al. 1990, 1992; Melchior et al. 1994; Murthy et al. 1994; Lee et al. 1997; Waterpaugh et al. 2000; Iida et al. 2007). The mechanism triggered by these methods (negative pressure vs. KAATSU) is quite different. However, the key physiological features of both the methods are lower extremity blood pooling, reduction of venous return to the heart, and subsequent hemodynamic changes including increased autonomic nervous system activation (Stevens and Lamb 1965; Tomassi et al. 1987; Lathers and Charles 1993). Therefore, the effects of KAATSU and LBNP on hemodynamic parameters previously reported (Frey et al. 1986; Sandler et al. 1988; Tomassi et al. 1990; Lathers and Charles 1993; Melchior et al. 1994; Iida et al. 2007) are compared and summarized in Table 4. Application of LBNP (-30, -40, and -50 mmHg) decreases SV in a pressure-dependent manner, 50 mmHg LBNP simulates systemic cardiovascular effects of orthostasis in 1 G (Wohlhuis et al. 1974). On the other hand, KAATSU (150–200 mmHg) in the supine position (Iida et al. 2007) decreases SV, which is comparable to standing and LBNP of -30 to -40 mmHg as shown in Table 4. The present study showed that during actually simulated weightlessness (6th head-down tilt for 24 h), KAATSU 100 mmHg on both the thighs produced 32% reduction of SV, which was equal to that observed in LBNP (-40 mmHg). Thus, KAATSU appears to effectively induce pressure-dependent retention of blood flow, and induce subsequent hemodynamic changes like LBNP.

Syncopal attack has been reported to occur in LBNP, especially when using high pressure more than -40 mmHg (Stevens and Lamb 1965). The mechanisms in the occurrence of syncope remain unresolved, but several factors such as blood pooling in the extremities and splanchic territory, and the deterioration of distal leg arterial and venous compliance have been proposed. The present study also showed that during actually simulated weightlessness, one subject had presyncope due to a drop of blood pressure during 100 mmHg KAATSU. This subject had no signs or verbal complaints associated with KAATSU (100–200 mmHg) in the seated position before bed rest. And, KAATSU markedly reduced SV and CO with an increase in TPR during the simulated weightlessness, compared with the seated position before bed rest, proposing that blood pooling in the extremities under hypovolemia developed during bed rest may be partly involved in the induction of presyncope. Thus, the occurrence of syncope should be taken into account during the actual space flight, when the KAATSU training is used during space flight. But, the KAATSU training is usually combined with exercises, and during exercise, the skeletal muscle pump mechanism partially counteracts accumulation of blood in hypoxic lower extremities like LBNP (Eiken et al. 1986; Waterpaugh et al. 1994), where dynamic leg exercise combined with LBNP has been reported to double

| Table 4: Comparative effects of LBNP and KAATSU on hemodynamic parameters reported in the references |
|------------------|------------------|------------------|------------------|------------------|
| Control | LBNP 50 mmHg | LBNP 50 mmHg | KAATSU 200 mmHg |
| HR | 70 (+23) | 66 (+27) | 66 (+44) |
| SV (L/m) | 94 (-21) | 66 (+27) | 66 (+44) |
| CO2 (mmHg) | 51 (+3) | 67 (+19) | 67 (+19) |
| CO2 (mL/min/m) | 21 (+17) | 30 (+10) | 30 (+10) |
| BNP (mg/dL) | 34 (+30) | 45 (+40) | 45 (+40) |
| SBP (mmHg) | 149 (+20) | 200 (+22) | 200 (+22) |
| DBP (mmHg) | 94 (+20) | 94 (+20) | 94 (+20) |
| forearm SBP (mmHg) | 162 (+20) | 162 (+20) | 162 (+20) |

References

Frey MA, Mathes KL, Hoffler GW (1986) Cardiovascular responses of women to lower body negative pressure. Aviat Space Environ Med 57:531-538
Millsor FM, Srivastaan RS, Thuller PH, Clare JM (1994) Simulation of cardiovascular response to lower body negative pressure from 0 to -40 mmHg. J Appl Physiol 77:696-700